
JOURNAL OF
SOUND AND
VIBRATION

www.elsevier.com/locate/jsvi

Journal of Sound and Vibration 279 (2005) 1131–1154

Modelling of fine-scale turbulence mixing noise

A. Khavarana,*, J. Bridgesb

aQSS Group, Inc., NASA Glenn Research Center, Cleveland, OH 44135, USA
bAcoustics Branch, NASA Glenn Research Center, Cleveland, OH 44135, USA

Received 5 August 2002; accepted 30 November 2003

Abstract

The present paper is a study of aerodynamic noise spectra from model functions that describe the source.
The study is motivated by the need to improve the spectral shape of the MGBK jet noise prediction
methodology at high frequency.

The predicted spectral shape usually appears less broadband than measurements and faster decaying at
high frequency. Theoretical representation of the source is based on Lilley’s equation. Numerical
simulations of high-speed subsonic jets as well as some recent turbulence measurements reveal a number of
interesting statistical properties of turbulence correlation functions that may have a bearing on radiated
noise. These studies indicate that an exponential spatial function may be a more appropriate representation
of a two-point correlation compared to its Gaussian counterpart. The effect of source non-compactness on
spectral shape is discussed. It is shown that source non-compactness could well be the differentiating factor
between the Gaussian and exponential model functions.

In particular, the fall-off of the noise spectra at high frequency is studied and it is shown that a non-
compact source with an exponential model function results in a broader spectrum and better agreement
with data. A recent source model proposed by Tam and Auriault that represents the source as a covariance
of the convective derivative of fine-scale turbulence kinetic energy is also examined.
r 2004 Elsevier Ltd. All rights reserved.

1. Introduction

A physics-based methodology utilizing the averaged equations of motion is used to assess jet
noise spectra as a function of the source model function. The focus here is small-scale turbulence
noise that dominates the spectra at subsonic Mach numbers. It is generally accepted that sound
generation in jets is a by-product of the unsteady features of the flow. Any flow manipulation
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intended to reshape the spectra and subsequent perceived noise level ought to affect the unsteady
characteristics of the flow.

Mixing enhancement devices such as chevrons and tabs are known to alter turbulence
statistics [1] and change the time- and length-scales of noise generating eddies. These flow
modifications directly impact the sound field by, for example, reducing the low-frequency
noise at the cost of adding to the high-frequency content. As such, it is not unreasonable to
argue that modelling of the unsteady behavior of the flow as supported by a number of isolated
test configurations may not lead to a reliable prediction tool. In an ideal situation, one
might attempt to solve the full compressible Navier Stokes equations without resorting to any
modelling closures. In fact, it is simply a matter of time before Direct Numerical Simulations
(DNS) should solve the far-field jet acoustics either directly or by some extension of the near-field
solution [2]. Clearly, the computational demands of a typical high Reynolds number jet leave little
room, at least in the near future, for DNS as a design code. Nevertheless, it could be an extremely
useful tool in understanding the unsteady features of the jet in order to improve the source
modelling.

On the other hand, the computational requirements are greatly reduced if the governing
equations are spatially filtered, as is done in the large eddy simulation (LES) [3–5], and the effect
of subgrid scales (SGS) is modelled. This approach is successful in capturing the distinct
directivity of supersonic jets that result from large scales of motion (instability waves) that
dominate the general noise picture near the down-stream axis. But it might also suffer from a
neglect of high-frequency noise resulting from sub-grid scales. A recent study by Seror et al. [6]
calculates the acoustic pressure from the filtered Lighthill’s stress tensor as well as the full tensor
and concludes that the SGS part of the tensor needs to be taken into account in order to recover
reliable high-frequency results. One must also be careful about the selection of the subgrid scale
model as well as the inflow perturbations used in the simulation [7]. LES predictions of Morris
et al. [3] appear to benefit from the dynamic subgrid model and narrow down some of the usual
over-predictions in turbulence and noise.

Physics-based prediction methods such as MGBK [8] or Tam and Auriault’s fine-scale model [9]
heavily rely on model functions that express the statistical properties of noise sources. These
predictions use the averaged equations of motion; hence the unsteady features of the flow are
entirely described by two-point, space–time correlation models. Any shortcoming in the
predictions should be directly linked to the model as well as the accuracy of the RANS
predictions. As a post processor, MGBK takes advantage of the latest developments in turbulence
modelling in its noise predictions. Presently, the Reynolds-averaged Navier–Stokes (RANS)
solution is generated using WIND [10] flow solver provided by the NPARC Alliance. In addition
to the source strength, other phenomena such as refraction and convection impact the directivity
of jet noise.

Woodruff et al. [11] study the isotropic source model in the original MGBK noise prediction
methodology [12] and examine alternative representations for the turbulence spectra. They
propose an energy spectrum function for the two-point velocity correlation to satisfy the
Kolmogoroff spectrum law [13] in the inertial sub-range. In particular, they examine a wave-
number-dependent Gaussian function for the temporal part of the correlation, as opposed to the
usual separable space and time functions. Here the characteristic frequency is scaled based on
spatial wave-number k and turbulence dissipation rate e as t�1

o Bk2=3e1=3: The predicted spectra do
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not appear to offer noticeable improvement over the conventional MGBK methodology that uses
a separable correlation function and calculates a characteristic frequency from turbulence kinetic
energy k as t�1

o Bk=e: Nonetheless, near 90� angle, they report slight improvement in their spectral
shape.

Tam and Auriault [9] model their source as a two-point correlation of the convective derivative
of kinetic energy of small-scale turbulence. They use RANS to calculate the time- and length-
scales of the noise sources as is done in the MGBK, and predict noise spectra in good agreement
with data at mid angles.

In all, the noise from small scales of motion, which are usually broadband in nature and cover a
range of observer angles, remains a significant part of the jet noise spectra. Indications are that at
high subsonic Mach numbers, and heated jets in particular, instability-associated noise may
dominate the low end of the spectra at shallow angles. On the other hand, one might argue that
the mean-flow effects could also play a role, by diverting the high-frequency noise of small-scale
turbulence away from the axis, and creating a region near the zone of silence that is dominated by
low-frequency noise.

In this work, alternative representations of the source in modeling the quadrupole terms of
Lilley’s equation are examined. Discussions concentrate on a 90� emission angle where shear-
noise is not a factor and the spectral shape is predominantly defined by the self-noise component.
The paper begins with some preliminary formulation of the governing equations. Section 2.2
derives expressions for source and non-compactness factor as a function of the proposed models.
It is shown that the fall-off of the high-frequency noise becomes less steep when an exponential
spatial function with an appropriate temporal function is selected and non-compactness effects
are included. Section 3 compares Tam and Auriault’s model [9] with the MGBK model as
proposed in Ref. [8]. It concludes that the spectral shape at 90� should be identical if consistent
assumptions are used. Some concluding remarks on future directions for a physics-based
modelling approach is given in Section 4.

2. Sound spectral density

Application of Lilley’s equation to the problem of jet noise and the significance of various
source terms has been the subject of numerous discussions in aeroacoustics. In a recent article,
Goldstein [14] gives an exact form of the equation with the dependent variable defined such that
the source is of a quadrupole/dipole nature. The quadrupole source is second-order in velocity
fluctuations and is the sum of the commonly known self- and shear noise terms as introduced by
Lilley. The dipole term is produced by the fluctuating sound speed due to temperature
fluctuations.

The far-field spectral density due to sources of Lilley’s equation may be expressed as integration
over the source volume y;

p2ðxjoÞ ¼
Z
y

Z
n

G�ðx; y� n=2;oÞGðx; yþ n=2;oÞQ12ðy; n;oÞ dn dy; ð1Þ

where G is an appropriate Green’s function, � denotes a complex conjugate, and Q12 is the source
spectral density which is formed from a Fourier transform of a two-point space–time correlations
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between source points y1 ¼ y� n=2 and y2 ¼ yþ n=2 separated by time t;

Q12ðy; n;oÞ ¼
Z þN

�N

Rðy; n; tÞeiot dt: ð2Þ

If the variation of the magnitude of the Green’s function with respect to n; within the source
region where Q12 is non-zero, is assumed negligible compared to that of its phase then

G�ðx; y� n=2;oÞGðx; yþ n=2;oÞEjGðx; y;oÞj2e�ik:n; ð3Þ

where k is a wave number of magnitude ðo=aNÞ and direction ðx� yÞ: Here o is the frequency at
the observer location x and aN denotes the ambient sound speed. Eq. (1) is now written as

p2ðxjoÞ ¼
Z
y

jGðx; y;oÞj2
Z

N

�N

eiot dt
Z

n
Rðy; n; tÞe�ik:n dn dy: ð4Þ

It is argued that changes in retarded time across a correlation volume element are more likely to
be small if the correlation is written in a frame x0 moving with convection velocity Uc of the
turbulent eddies (i.e. x0 ¼ x� iUct). Experimentally, the correlation Rðy; n; tÞ in a jet flow
describes a fluctuating pattern in a moving frame and is expressed as

Rmðy; nm; tÞ ¼ Rðy; n; tÞ; nm ¼ n � iUct: ð5Þ

The source frequency O is related to the observer frequency through the usual Doppler effect
O ¼ oð1� Mc cos yÞ: Making a transformation to the moving frame, one finds �k:n þ ot ¼
�k:nm þ Ot; thereforeZ þN

�N

eiot dt
Z

n
Rðy; n; tÞe�ik:n dn 	

Z þN

�N

eiOt dt
Z

nm

Rmðy; nm; tÞe
�ik:nm dnm: ð6Þ

Now the noise spectral density with respect to the moving frame is given as

p2ðxjoÞ ¼
Z
y

jGðx0; y;OÞj2
Z

N

�N

eiOt dt
Z

nm

Rmðy; nm; tÞe
�ik:nm dnm dy: ð7Þ

2.1. Self noise spectra

For brevity, the subscript m is suppressed in this section, and n is used as the separation vector
with respect to a moving frame.

To assess the far-field mean-square pressure due to the self-noise term only, Lilley’s equation is
written in a co-ordinate x0 moving with convection velocity Uc;

Lðpself ;V ;x0
1Þ ¼ D r

@2ðuiujÞ
@x0

i@x0
j

 !
: ð8Þ

Here L is the Lilley operator, V ¼ U � Uc; and the density r has been moved to the right of
operator D ¼ @=@t þ V@=@x0

1 assuming that flow is locally parallel and that density fluctuations
are small so r is the mean density. The Green’s function to the above equation for a source of
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type Dfe�iOtdðx0 � x0oÞg is

LðSe�iOt;V ; x0
1Þ ¼ Dfe�iOtdðx0Þdðj� joÞdðr � roÞ=rg: ð9Þ

In the high frequency limit, S is given as [15]

Sðx0; y;OÞ ¼
1

4pR

ao=aN

ð1� Mc cos yÞð1� Mo cos yÞ
zo

rogo

� �1=2

� eiOR=aNe
i O=aN

R
N

0
ðg�gNÞ dr�zo cosðj�joÞ

h i
; ð10Þ

where

z ¼
Z r

0

gðr; yÞ dr: ð11Þ

Subscript o refers to source location and the shielding function gðr; yÞ is defined in Appendix A.
The above expression for S is applicable outside the zone of silence of a source only, where the

shielding function g2ðr; yÞ is positive at all radial positions; hence there is no shielding. The
acoustic pressure due to the above source and Green’s function becomes

pself ðx0; tÞ ¼
Z

t1

Z
y

#Sðx0; t; y; t1Þr
@2ðuiujÞ
@yi@yj

dt1 dy: ð12Þ

#Sðx0; t; y; t1Þ is the inverse Fourier transform of Sðx0; y;OÞe�iOt1 ;

#Sðx0; t; y; t1Þ ¼
1

2p

Z þN

�N

Sðx0; y;OÞe�iOðt�t1Þ dO: ð13Þ

Upon transferring the derivatives from the source to the Green’s function and making the
approximation that variation of the magnitude of the Green’s function Sðx0; y;OÞ with respect to
the separation vector n within the source region is negligible compared to that of its phase,
Eq. (12) leads to

p2
self ðxjoÞ ¼

Z
y

jS;ij ðx0; y;OÞS;kl ðx0; y;OÞjIijklðy;OÞ dy: ð14Þ

Subscripts on S refer to derivatives with respect to source co-ordinate y; and the phase factor e�ik:n

is now included with the source correlation Iijkl : In addition, the mean density gradients have been
neglected so that density r is included within the source correlation function

Iijklðy;OÞ ¼ r2

Z
n

Z þN

�N

ðuiujÞðu0
ku0

lÞe
�ik:neiOt dt dn: ð15Þ

The volume integration in Eq. (14) usually includes the most energetic parts of the jet. For
axisymmetric jets, the directivity factor may be averaged azimuthally with respect to source and
observer circumferential angles to obtain a ring-source directivity factor aijkl : Subsequently, jet
volume integration will be limited to radial and axial co-ordinates:

aijkl 	
1

4p2

Z þp

�p

Z þp

�p
jS;ijS;kl j dj djo; ð16Þ
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p2ðxjoÞ ¼
Z

y1

Z
r

aijklIijklðy;OÞð2pr dr dy1Þ: ð17Þ

Eq. (17) is now written in an expanded form for a unit volume of turbulence at source point y:X
ðSelfNoiseÞ ¼ I1111a1111 þ I2222a2222 þ I3333a3333 þ 2I1122a1122 þ 4I1212a1212

þ 2I1133a1133 þ 4I1313a1313 þ 2I2233a2233 þ 4I2323a2323: ð18Þ

Directivity factors aijkl and shielding coefficients b are defined in Appendix A. In axisym-
metric jets, a2222 ¼ a3333; a1212 ¼ a1313 ¼ a1122 ¼ a1133 and a2233 ¼ a2323: At 90�; Eq. (18)
simplifies to X

ðSelfNoiseÞ ¼ 2I2222a2222 þ 2ðI2233 þ 2I2323Þa2233; y ¼ 90�: ð19Þ

At this point, a physics-based modelling approach is employed to obtain closed-form
expressions for the various correlation coefficients appearing in Eqs. (18) and (19). For
convenience, it is assumed that the joint probability distribution of velocities u and u0 at points
y and y0 (separated in space and time) is normal, hence the fourth order cross-correlation function
is written as a superposition of second order correlations [16]. In addition, the second order
correlation is assumed separable, i.e., uiu

0
j ¼ RijðnÞCðtÞ: Here RijðnÞ and CðtÞ denote the spatial

and temporal parts of the correlation, respectively. From Eq. (15), the axial correlation coefficient
becomes

I1111ðy;OÞ ¼ 2r2GðOÞ
Z

n
R2

11ðnÞe
�ik:n dn; GðOÞ 	

Z þN

�N

C2ðtÞeiOt dt: ð20Þ

In homogeneous isotropic turbulence, the two-point correlation function has the form [13]

RijðnÞ ¼ u2
1 f þ 1

2
x f 0
 �

dij � 1
2

f 0xixj=x
� 


: ð21Þ

In the following discussion both Gaussian and exponential spatial functions are examined.

2.2. Compact eddy approximation

In a compact eddy approximation, the assumption is made that the eddy length-scale c is much
shorter than the wavelength of the acoustic disturbances, i.e. oc=aN is small compared to unity.
As such the factor e�ik:n is set equal to unity, which practically amounts to setting the wave
number equal to zero. Thus the four-dimensional transform (15) simplifies:

Iijklðy;OÞDr2

Z
n

Z þN

�N

ðuiujÞðu0ku0lÞe
iOt dt dn; ðcompact eddyÞ: ð22Þ
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Using an appropriate model in Eq. (20) with k ¼ 0 one finds

ðaÞ I1111ðy;OÞ ¼
1

2
ffiffiffi
2

p r2ðu2
1Þ

2c3GðOÞ; f ðnÞ ¼ e�p x2=c2 ;

ðbÞ I1111ðy;OÞ ¼
4

5p2
r2ðu2

1Þ
2c3GðOÞ; f ðnÞ ¼ e�p x=c;

ðcÞ I1111ðy;OÞ ¼
1

2
ffiffiffi
2

p r2ðu2
1Þ

2c1c
2
2 GðOÞ; f ðnÞ ¼ e�pðx21=c

2
1þ x223=c

2
2Þ;

ðdÞ I1111ðy;OÞ ¼
4

5p2
r2ðu2

1Þ
2c1c

2
2 GðOÞ; f ðnÞ ¼ e�p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx21=c

2
1þx223=c

2
2Þ

p
;

ð23Þ

with x223 ¼ x22 þ x23: Models (a) and (b) assume isotropic turbulence, whereas (c) and (d) use an
axisymmetric turbulence constructed from a set of kinematically compatible scalar functions [8].
Length-scales c1 and c2 are proportional to ðu2

1Þ
3=2=e and ðu2

2Þ
3=2=e; respectively.

Consider the isotropic model, cases (a) and (b). Substituting the remaining correlation
coefficients into Eq. (19) (see Appendix B) leads toX

ðSelfNoiseÞ ¼ 2ða2222 þ a2233ÞI1111; y ¼ 90�: ð24Þ

The shielding coefficients b that multiply the directivity factor aijkl result in noise attenuation
within the zone of silence. At 90� emission angle, O ¼ o; and the shielding function is g2ðr; yÞ ¼
ðaN=aÞ4; where a is the sound speed at the source. Here g2ðr; yÞ has no zero crossing, therefore
there is no turning point and b ¼ 1:X

ðSelfNoiseÞ ¼ jSj2k4 aN

a

� �4

I1111; y ¼ 90�: ð25Þ

Away from 90�; Eq. (18) should be used directly. In addition, the shear noise contribution needs
to be included as described in Ref. [8]. Model (c) shows that the directivity of jet noise with respect
to its level at 90� is a function of anisotropy of turbulence [8].

Let to be the inverse of the characteristic source frequency, which is proportional to turbulence
kinetic energy and its dissipation rate as t�1

o ¼ Oo ¼ a1e=k: The eddy length-scale is obtained from
cBtou1: At this the point noise spectrum at 90� may be calculated using models (a) or (b) in
Eq. (25) and an appropriately selected proportionality factor for c: It is clear that the spectral
shape will be the same for both models. For instance, if the proportionality factor selected for
length-scale c in model (b) was larger than that of model (a), say by factor ð5p2=8

ffiffiffi
2

p
Þ1=3; then

identical spectra are obtained.
Upon examining the three-dimensional energy spectrum for a two-point correlation RijðnÞ using

models (a) and (b), it is found that both scale as fourth power of spatial wave number when the
wavelength is large. However, in the inertial sub-range, their decay rate is substantially different.
The energy spectrum function, normalized with respect to ð1:5u2

1Þ; is given as (see page 208 of
Ref. [13])

EðkÞ ¼
c

12p
ðkcÞ4

ð4pÞ2
e� ðkcÞ2=ð4pÞ; f ðnÞ ¼ e�p x2=c2 ;
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EðkÞ ¼
16c

3p2

ðkc=pÞ4

ð1þ k2c2=p2Þ3
; f ðnÞ ¼ e�p x=c: ð26Þ

Fig. 1 shows that the energy spectrum for the exponential function (model (b)) decays as
k�2 at large wave number. This is reasonably close to the proposed Kolmogoroff’s k�5=3

scaling law [13]. Model (a), however, presents a much faster decay rate. These compari-
sons suggest that when non-compactness effects are accounted for, the two models, if
properly used, should produce different spectral decay at high frequency (this will be shown in
Section 2.4).

Ref. [13] argues that the exponential function may not be strictly correct on the grounds that (1)
it is not parabolic at its vertex, (2) the lateral correlation u1u01 with n in direction of x2 remains
positive for all x2; whereas the correct curve must become negative for large x2: Recent
measurements of Bridges and Wernet [17] appear to suggest that the exponential spatial function
provides a better fit to data relative to the Gaussian function (see Fig. 2).

2.3. Source non-compactness

Here the effect of source non-compactness on noise spectra is examined using Gaussian and
exponential models (a) and (b). To carry out the integration with respect to n in Eq. (15) or (20), a
convenient coordinate transformation has one of the axes xi aligned with vector k: In a spherical
co-ordinate n ¼ xðcos a; sin a cosj; sin a sin jÞ; x1 is aligned with wave number k such that k:n ¼
kx cos a: Equivalently, one might select a cylindrical co-ordinate system n ¼ ðx1; r cosj; r sin jÞ
with x1 in the direction of k such that k:n ¼ kx1: In any event, when turbulence is isotropic, the
final result should be independent of the direction of wave number k: Now with f ðnÞ ¼ e�px2=c2

one finds

I1111ðy;OÞ ¼
1

2
ffiffiffi
2

p r2ðu2
1Þ

2c3GðOÞNðkcÞ; NðkcÞ ¼ e�k2c2=ð8pÞ; ð27Þ
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where NðkcÞ denotes the non-compactness factor. Using an exponential function f ðnÞ ¼ e�p x=c

leads to

I1111ðy;OÞ ¼
4

5p2
r2ðu2

1Þ
2c3GðOÞNðkcÞ;

NðkcÞ ¼ 20
p
kc

� �5

3 tan�1 kc

2p

� �
� 2

kc

p
5ðkc=pÞ2 þ 12

ððkc=pÞ2 þ 4Þ2

" #
: ð28Þ
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Fig. 2. Measurements of a two-point correlation in a high-subsonic jet: (a) R11ðx1Þ; (b) R22ðx1Þ; (c) R11ðx2Þ; (d) R22ðx2Þ:
F; Eq. (21) with exponential spatial function; - - - -, Eq. (21) with the Gaussian function; ’; data.
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Fig. 3. Non-compactness factor NðkcÞ for two types of spatial functions: F; Gaussian spatial function; - - - -,

exponential function.
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Applying the law of limits repeatedly, the last expression for NðkcÞ becomes 1 as kc approaches
zero. Fig. 3 shows that the non-compactness factors equal 1.0 for 0pkco2 and decays rapidly for
kc > 7: The Gaussian function appears to produce a faster-decaying non-compactness factor. The
above non-compactness factors repeat for other correlation coefficients as noted in Appendix B.

Since cBtou1; one finds kcBðotoÞðu1=aNÞ: The ratio u1=aN is usually smaller than 1.0 (of the
order of 0.2 for the more energetic parts of the jet). In a compact eddy approximation kc was
assumed small hence NðkcÞ was set equal to 1.0 for the entire range of the wave number. As
frequency o becomes very large, oto may be large enough to reduce N below 1.0 (Fig. 3).
Implications are that the effect of NðkcÞ on spectra, if any, should be a slower decay rate at high
frequency for the exponential function relative to the Gaussian. It is also evident that either model
should produce a faster decay at high frequency when sources become non-compact. However, as
will be seen shortly, these effects are visible only in the context of the spectral shape function
GðOÞNðkcÞ: If GðOÞ has already decayed far enough before NðkcÞ takes effect, then both models
produce identical spectra.

Fig. 4 shows the MGBK prediction using Gaussian-isotropic source model (a). The
effect of source non-compactness on predicted noise spectra for a Mach 0.5 cold jet is of the
order of 0:12 dB at the high end of the spectra. Here the temporal part of the correlation was
selected as [8]

CðtÞ ¼ exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs=2Þ2 þ ðt=toÞ

2
q� �

: ð29Þ

The constant s ¼ 0:8; as was originally proposed in Ref. [8]. One might expect a similar effect at
other angles, as NðkcÞ is a common factor throughout Eq. (18).

Next the MGBK spectral shape function is explored.

2.4. Spectral shape function

Apart from factor k4; which appears due to transfer of derivatives from the source to the
Green’s function (not included in the following discussion), the spectral shape function,
denoted as #F1ðotoÞ; is simply the product GðOÞNðkcÞ: Function GðOÞ is obtained from
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Eqs. (20) and (29):

#F1ðotoÞ ¼ sto

K1 s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðOto=2Þ

2
q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðOto=2Þ

2
q NðkcÞ: ð30Þ

The normalized spectral function becomes

#F1ðotoÞ ¼
K1 s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðOto=2Þ

2
q� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðOto=2Þ

2
q

K1ðsÞ
NðkcÞ; O ¼ oð1� Mc cos yÞ: ð31Þ

As s becomes very small one finds

#F1 ¼
1

1þ ðOto=2Þ
2

NðkcÞ; as s-0: ð32Þ

Fig. 5 shows the spectral shape function #F1ðotoÞ for model (a), with c=ðUtoÞ ¼ 0:20 which applies
to the more energetic parts of the flow. Fig. 5(a) shows a negligible role for the non-compactness
factor at s ¼ 0:80: The effect of NðkcÞ becomes evident as shown in Figs. 5(b) and (c). It should be
noted that when s-0 the compact source model becomes increasingly inadequate (resulting in
unusually high level of noise at high frequency).

Comparison of the spectral shape functions of models (a) and (b) shows a slower high-
frequency decay for the exponential model (Figs. 6(a) and (b)). Shown in Fig. 7 is the predicted
spectrum for the Mach 0.5 cold jet with s ¼ 0; including the non-compactness. Model (b) predicts
a broader spectrum and noticeable high-frequency improvement relative to model (a). Here, the
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location of the peak frequency was adjusted slightly by selecting the proportionality constant a1
defined in ðt�1

o ¼ a1e=kÞ as 0.225 and 0.170 for model (a) and (b) respectively.

3. Tam and Auriault’s model

In Ref. [9] Tam and Auriault compute the fine-scale turbulence noise from an equation similar
to Eq. (7). Here the Green’s functions as well as the source cross correlation functions between the
MGBK model and Tam’s approach are compared.

3.1. Green’s function

The Green’s function to linearized Euler equations for a locally parallel flow is the solution to

LðGe�iot;U ; x1Þ ¼ e�iotdðx� xoÞ; ð33Þ

where o denotes source frequency with respect to stationary frame x; xo is the source location
(same as y), and L is Lilley’s operator. Tam and Auriault [18] recast the problem into an adjoint
operator for the adjoint Green’s function Ga; which is related to the Green’s function G of the
original problem by a simple switch of the source and observer locations xo and x: The final result
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for an axisymmetric mean flow (now multiplied by 2pa2
N

to compare with the high-frequency
solution) is given as

Gðx; xo;oÞ ¼ Gaðxo;x;oÞ;

Gaðxo;x;oÞ ¼
e�ikðx cos y�RÞ

4pkaNR

XN
m¼0

fmðr; k; yÞ cos mj; ropRo: ð34Þ

Function fm is obtained by solving a second order ordinary differential equation [18] and
matching the inner solution (34) with the outer solution at the jet boundary Ro which is obtained
by solving the Helmholtz equation,

Gaðxo; x;oÞ ¼
e�ikðx cos y�RÞ

4pkaNR

XN
m¼0

½ð�iÞmemJmðwÞ þ AmH ð1Þ
m ðwÞ�cos mj; roXRo; ð35Þ

where w ¼ kRo sin y: A numerical solution to this differential equation is obtained for a selected
observer angle y and frequency o: In addition, the mean velocity and temperature profiles at the
stream-wise source location need to be specified through a RANS solver. The number of
summation modes m required for a converged solution (34) increases with frequency o:

The corresponding high-frequency solution [15,19] for a non-convecting ðO ¼ oÞ monopole
type source takes one of the following forms depending on the location of the source ro relative to
the zero crossing point rs of the shielding function, i.e., gðrs; yÞ ¼ 0 (see Appendix A for the
definition of g):

Gðx; y;oÞ ¼
i

4paNkR

ao=aN

ð1� Mo cos yÞ2
zo

rofo

� �1=2

eikRe
ik
R

N

rs
ðg�gNÞ dr�gNrs

h i

� e�k½zs�zo cosðj�joÞ�; roors; ð36Þ

with f 2 ¼ �g2; z ¼
R r

0 f ðr; yÞ dr; or

Gðx; y;oÞ ¼
i

4paNkR

ao=aN

ð1� Mo cos yÞ2
zo

rogo

� �1=2

eikRe
ik
R

N

0
ðg�gNÞ dr�zo cosðj�joÞ

h i
; ro > rs; ð37Þ

with z ¼
R r

0 gðr; yÞ dr:
Figs. 8–11 compare the above Green’s functions (normalized with respect to the free-space

Green’s function) for a stationary ring source at seven diameters from the jet exit ðx=D ¼ 7Þ: The
mean flow was calculated numerically for a convergent jet at Mach 0.9 and temperature ratio of
1.0 by solving Reynolds-averaged Navier–Stokes equations with a standard k� e turbulence
model. Green’s function comparisons are shown for a range of Strouhal numbers ðSt ¼ fD=UjÞ
and ring source radii ðro=DÞ: The agreement is generally good at high frequency. As the Strouhal
number is lowered, the high-frequency approximation appears to deteriorate. Discrepancies
become increasingly visible near the boundary of the zone of silence, with the numerical Green’s
function predicting a larger zone of silence. In the neighborhood of y ¼ 90�; however, there is
good agreement between the two Green’s functions. Since the spectral peak for both Mach 0.5
and 0.9 cold jets is near St ¼ 0:9; the high-frequency solution should be adequate for noise
prediction at and near 90�:

It is noted that the Green’s function for a monopole type source scales as k�1 with respect to the
wave number and as 1=ð1� Mo cos yÞ2 with respect to the polar angle.
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3.2. Source model

Tam and Auriault [9] propose a two-point, fourth order, axial velocity correlation in a fixed
reference frame,

Dqsðx1; t1Þ
Dt1

Dqsðx2; t2Þ
Dt2

� �
¼

#q2
s

c2t2s
exp

�jx1j
Uts

�
ln2

c2s
½ðx1 � UtÞ2 þ x223�

( )
; ð38Þ

with n ¼ x1 � x2; t ¼ t1 � t2; x23 as defined earlier, and U is the mean velocity at the source
location, which can be replaced with the source convection velocity and the source strength q is
proportional to the turbulence kinetic energy of fine-scale turbulence. Subscript s denotes the
source location and n here is used as separation vector in a fixed reference frame.

The corresponding axial correlation coefficient used in the MGBK describes the cross
correlation of the Reynolds stress components rather than their convective derivatives. Following
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the usual MGBK methodology, the fourth order correlation I1111ðx; tÞ ¼ /ðru1u1Þðru0
1u01ÞS is

expressed as a sum of second order tensors. The element of I1111 contributing to the noise field is
simply 2R2

11ðnÞC
2ðtÞ which, upon using model (a) in Eq. (21), and making a transition to a fixed

reference frame, becomes

I1111ðn; tÞ ¼ 2r2ðu2
1Þ

2 1�
p
c2

x223

� �2

exp �2
p
c2

½ðx1 � UtÞ2 þ x223�
� �

C2ðtÞ; ð39Þ

and the temporal function is given by Eq. (29).
The factor ð1� px223=c

2Þ in Eq. (39) reduces I1111ðn; tÞ to zero as the normalized lateral distance
ðx23=cÞ approaches 1=

ffiffiffi
p

p
: Beyond this point the correlation is practically zero.

In order to compare correlation functions (38) and (39) on an equal basis, suppose one relates
time- and length scales and defines the dimensionless parameters

c ¼
2p
ln2

� �0:5

cs; to ¼ 2ts; %xi ¼ xi=cs; %t ¼ t=ts: ð40Þ
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Now the lateral correlations, with zero time-delay, and normalized in magnitude become

Dqsðx; t1Þ
Dt1

Dqsðx þ x23; t1Þ
Dt2

� �
¼ expf�ln2 %x223g ð41Þ

and

I1111ðx23; 0Þ ¼ 1�
ln2

2
%x223

� �2

expf�ln2%x223g: ð42Þ

Fig. 12 shows that Eqs. (41) and (42) decay somewhat differently. Tam and Auriault’s correlation
(41) does not have a zero intersect and decays at a slower rate. Limited data available on fourth-
order correlation measurements [20] seem in better agreement with the MGBK model. However,
this difference may practically be insignificant in noise prediction. An interested reader may find
more information on the second-order lateral correlation in a book by Townsend [21].

Aside from x23; which is now set equal to 0.0, the two models appear similar. The normalized
axial cross correlation functions are

Dqsðx; t1Þ
Dt1

Dqsðx þ x1; t2Þ
Dt2

� �
¼ exp f�aj%x1j � ln2ð%x1 � %t=aÞ2g; ð43Þ

I1111ðx1; tÞ ¼ exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ %t2

p
� ln2ð%x1 � %t=aÞ2

n o
ð44Þ
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with a ¼ ðcs=UtsÞ:Using Tam and Auriault’s constants (cs ¼ cck3=2=e; ts ¼ ctk=e; with cc ¼ 0:256;
ct ¼ 0:233) one finds a ¼ ðcc=ctÞðk0:5=UÞ: Let’s set U equal to the convection velocity 0:65UJ : In
the more energetic parts of the flow (mixing layer) one might select ðk0:5=UJ ÞD0:12; and find
aD0:20:
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Fig. 13 shows Tam and Auriault’s correlation coefficient (43) and the MGBK model (44), with
s ¼ 0: The effect of the small parameter s is shown in Fig. 14. Aside from the slight difference
described above in comparing the lateral correlations, the two models exhibit similar features.
Next, the spectral shape functions are compared.

3.3. Spectral function

The MGBK spectral function was written earlier in a moving frame as a Fourier transform of
the temporal function C2ðtÞ; multiplied by the non-compactness factor. In a fixed frame, the
variable t appears in ðx1 � UtÞ; hence the spatial function needs to be include in the integration.
However, with a simple transformation nm ¼ n � iUt; the spectral shape function (31)
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Fig. 13. Comparison between the axial cross-correlation coefficient of Tam et al. and MGBK: (a) Tam’s model

(Eq. (43)); (b) MGBK model (Eq. (44)) with s ¼ 0:

Fig. 14. MGBK cross correlation function (Eq. (44)) with s ¼ 0:40:
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is recovered. For comparison with Tam’s spectra let to ¼ 2ts as defined in Eq. (40):

#F1ðotsÞ ¼
K1 s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðOtsÞ

2
q� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðOtsÞ

2
q

K1ðsÞ
NðkcÞ; O ¼ oð1� Mc cos yÞ: ð45Þ

NðkcÞ for model (a) is given by Eq. (27). And

#F1 ¼
1

1þ ðOtsÞ
2

NðkcÞ; as s-0: ð46Þ

Following Eq. (33) of Ref. [9], Tam and Auriault’s spectral function #F2 is written for a unit
volume of turbulence at y:

#F2ðotsÞ ¼
Z

n

Z
t

paðy; x;�oÞpaðyþ n; x;þoÞ

� exp �
jx1j
Uts

�
ln2

c2s
½ðx1 � UtÞ2 þ x223� þ iot

( )
dt dn: ð47Þ

Here pa is the direct Green’s function, which is obtained from switching source and observer
locations in the adjoint problem. As was done earlier, the product of the Green’s functions is
approximated as the magnitude at the center of the correlation volume multiplied by a proper
phase,

paðy;x;�oÞpaðyþ n; x;þoÞEjpaðy;x;�oÞj2eik:n: ð48Þ

Phase factor k:n should not carry a preferred direction since rays are emitted at all angles and the
separation vector n may also take any direction. It follows that

#F2ðotsÞ ¼ jpaðy; x;�oÞj2
Z

n

Z
t

exp �
jx1j
Uts

�
ln2

c2s
½ðx1 � UtÞ2 þ x223� þ ik:n þ iot

( )
dt dn;

or upon integrating over t;

#F2ðotsÞ ¼ jpaðy;x;�oÞj2 exp �
1

ln2

ocs

2U

� �2
 ! Z

n
exp �

jx1j
Uts

�
ln2

c2s
x223 � i

ox1
U

þ ik:n

( )
dn:

As before, make a co-ordinate transformation with respect to the dummy variable n such that x1
aligns with k (i.e., k:n ¼ kx1). The component of U in direction of k becomes Uy ¼ U cos y; and

#F2ðotsÞ ¼ jpaðy; x;�oÞj22c3 exp �
1

ln2

ocs

2U

� �2
 !Z þN

�N

Z þN

�N

dx2 dx3

�
Z

N

0

exp �
cx1

Uyts

� ln2x223

� �
cos

o
Uy

� k

� �
x1

� �
dx1:

Next, transition to polar co-ordinates n ¼ ðx1; r cosj; r sin jÞ results in

#F2ðotsÞ ¼ jpaðy; x;�oÞj2
2pc3s
ln2

Uts=cs

1þ ðots � UytskÞ
2
exp �

1

ln2

ocs

2U

� �2
 !

: ð49Þ
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Expression (49) is now normalized to obtain the spectral shape function. Here source definition
requires that paBk: The magnitude of the Green’s function is also taken out of the spectral
function, as was done in Eq. (45). For a compact eddy ðk ¼ 0Þ;

#F2ðotsÞ ¼
1

1þ ðotsÞ
2
exp �

1

ln2

ocs

2U

� �2
 !

; ðcompact eddyÞ; ð50Þ

and

#F2ðotsÞ ¼
1

1þ ðotsÞ
2 1� U

aN
cos y

� �2
exp �

1

ln2

ocs

2U

� �2
 !

; ðnon-compact eddyÞ: ð51Þ

This result is the same as that reported by Tam and Auriault [9] but was derived without resorting
to the following approximation that was suggested in Ref. [9]:

paðy;x;�oÞpaðyþ n; x;þoÞDjpaðy;x;�oÞj2eikx1 cos y:

At this point let’s compare Eq. (51) with the MGBK shape function (model (a)) given by
Eq. (45). Fig. 15 shows comparisons with cs=Uts ¼ 0:20 as was selected earlier. The MGBK
spectral shape (with s ¼ 0:20) agrees quite favorably with Tam’s results at U=aN ¼ 0:325 and
0.65 as shown in Figs. 15(a) and (b), corresponding to jet exit velocities of UJ=aN ¼ 0:50 and
UJ=aN ¼ 1:0 respectively.

As noted before, wave number powers k4 (MGBK model) and k2 (Tam’s model) were
deliberately dropped (due to normalization with respect to Green’s function) when comparing the
spectral shape functions. In the MGBK approach, the factor k4 appears when two spatial
derivatives and one convective derivative are transferred from the source to the Green’s function
as seen in Eq. (25). Tam and Auriault, on the other hand, maintain that the convective derivative
is included in their source modeling. As a result the Green’s function pa remains of the order of k
(Eq. (28) of Ref. [18]), which incidentally indicates that source qs should be of the quadrupole
type. With the convective derivative now hidden in the source, the power spectral function
becomes proportional to k2:
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Morris and Farassat [22] described this in more detail in a recent paper and suggested that a
consistent approach should result in Bk4 for both MGBK and Tam’s analysis.

Fig. 16 shows the MGBK predictions for the Mach 0.5 cold jet using model (a) and a spectral
shape function that matches that of Tam and Auriault’s (curve 1). Predictions obtained by
replacing the k4 wave-number factor by k2 (as in Tam and Auriault approach) are also shown. In
doing so, some minor adjustments had to be made in the calibration constant related to the source
characteristic frequency to preserve the location of the peak spectra. The noise spectrum naturally
becomes broader with the k2 factor (compare 1 and 2), and improvements are noticed at both
ends.

Additional high-frequency improvement could be gained by simply removing the atmospheric
attenuation built in the MGBK code from predictions and implying that it is built into the source
model (as was done in the spectral predictions of Ref. [9] at R=D ¼ 100). However, predicted the
noise spectrum should account for atmospheric attenuation. This amounts to attenuating the
high-frequency noise depending on the observer distance and atmospheric conditions (i.e., relative
humidity and ambient temperature). Noise measurements usually reflect the atmospheric
attenuation. Fig. 16 (curve 3) shows the significance of atmospheric loss on predicted spectra.
Although excellent agreement with data is thereby obtained, two very questionable steps were
taken to predict a better spectrum.

As was shown earlier (Fig. 7), good agreement with data could be achieved by selecting an
exponential spatial function (model (b)) in place of the Gaussian function.

4. Conclusions

In the preceding discussions, alternative model representations for the two-point space–time
correlation appearing in physics-based jet noise prediction methodologies were examined. It was
argued that a proper representation of the source, consistent with the observations and accepted
fundamentals related to turbulence statistics, should improve prediction of the flow-generated
noise in the framework of Lilley’s equation. The discussions centered on noise from small-scales
of motion and at a 90� observer-angle. The main result of the study was described in Fig. 7. It was
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shown that an exponential spatial function, with source non-compactness included, predicts a
broader spectrum relative to a Gaussian function and better agreement with data. The effect of
turbulence anisotropy may readily be accounted for by selecting model (d) of Section 2.2 as a non-
compact source.

Away from 90�; mean-flow refraction effects as well as convective amplification due to source
motion become crucial in capturing the peak directivity that occurs near the down-stream axis. A
high-frequency approximation offers an analytical solution to the Green’s function, but
comparisons of Section 3.1 indicate that it might not be an appropriate approximation at the
peak directivity angle and at small Strouhal numbers.

A numerically computed Green’s function [18] provides extra flexibility at low frequency, at the
cost of added numerical intensity.
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Appendix A. Quadrupole directivity factors

The directivity factor for various quadrupole source components (in the absence of mean
density gradient) is

a1111 ¼
cos4 y

ð1� Mc cos yÞ
4

O
aN

� �4

jSj2b; a1122 ¼
g2ðroÞcos2 y

2ð1� Mc cos yÞ
2

O
aN

� �4

jSj2b;

a2222 ¼ 3
8g

4ðroÞ
O

aN

� �4

jSj2b; a2233 ¼ 1
8g

4ðroÞ
O

aN

� �4

jSj2b ðA1Þ

and the shielding function is

g2ðrÞ ¼
ð1� Mo cos yÞ2ðaN=aÞ2 � cos2 y

ð1� Mc cos yÞ
2

: ðA2Þ

It should be noted that correlation coefficients aijkl all have a Doppler factor to the power of 4 in
the denominator, which when multiplied by ðO=aNÞ4 makes aijkl proportional to k4: Shielding
coefficients b depends on the number of turning points of g2ðrÞ as well as the location of source
point ro with respect to that of the turning point rs: In general, the deeper the source is embedded
in the negative region of g2ðrÞ; larger is the shielding. For example, when there is only one turning
point the shielding becomes

b ¼
1; rs1

oro;

exp �2
O

aN

R rs1
ro

ffiffiffiffiffiffiffiffiffiffiffiffi
jg2ðrÞj

p
dr

� �
; roors1

:

8><
>: ðA3Þ
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When there are two turning points such that rs2
ors1

then

b ¼

1; rs1
oro;

exp � 2
O

aN

R rs1
ro

ffiffiffiffiffiffiffiffiffiffiffiffi
jg2ðrÞj

p
dr

� �
; rs2oroors1

;

exp �2
O

aN

R rs1
rs2

ffiffiffiffiffiffiffiffiffiffiffiffi
jg2ðrÞj

p
dr

� �
; roors2

ors1
:

8>>>>><
>>>>>:

ðA4Þ

The shielding function for cases involving more than two turning points can similarly be
expressed.

Appendix B. Correlation coefficients

For a homogeneous isotropic turbulence, various correlation coefficients are related to the axial
component by

I2222 ¼ I3333 ¼ I1111; I1122 ¼ I1133 ¼ I2233 ¼ 1
8

I1111; I1212 ¼ I1313 ¼ I2323 ¼ 7
16

I1111: ðB1Þ

These relations hold with either Gaussian or exponential spatial functions and apply to compact
as well as non-compact source models.
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